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Abstract
In this paper we present a formalism for the calculation of electron transport
through three-terminal junction devices, which have received attention due to
their recently demonstrated non-linear electrical properties. The formalism,
which is based on the scattering-matrix method, takes quantum interference
effects fully into account. Furthermore, the formalism provides numerical
stability in the calculations as well as large flexibility in the modelling of
arbitrary potential profiles due to the common basis approach used in the
formulation. The method is used to calculate the transport properties for Y-
shaped three-terminal ballistic junction (TBJ) structures with configurations
typical of recently performed experiments. Quantum interference effects are
shown to strongly influence the transport characteristics of TBJ structures due to
complex scattering of the electrons in the cavity-like coupling window between
the three arms of the device. The theoretical approach presented in this paper
provides a flexible tool for the study of such quantum interference effects,which
may play an important role in the design and functionality of future nanoscale
devices based on three-terminal junctions.

1. Introduction

Three-terminal junctions have very recently emerged as excellent candidates for use as building
blocks in the formation of nanoscale electronic devices. On one hand, rapid development in
the field of carbon nanotubes [1–3] has enabled the realization of carbon nanotube Y junctions
[4–7] which have displayed interesting nonlinear electric properties [5, 6]. The implementation
of carbon nanotubes in real electronic devices is, however, still difficult due to the lack of
technologies for controlled production of such junctions and for individually contacting the
three arms. On the other hand, three-terminal ballistic junction (TBJ) devices based on high-
quality semiconductor heterostructures have been realized with state of the art nanofabrication
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technology [8–11]. Originally, Y-branch switches (Y-shaped TBJ devices) were proposed with
the aim of realizing low switching voltages in a single-mode, coherent regime of operation [12–
14]. In such a device, electrons injected from a source contact are deflected by a lateral electric
field, created by gates in the branching region, into either of two drain contacts.

A different type of operation for three-terminal junction devices was recently theoretically
investigated by Xu [15, 16], who also predicted new, exploitable non-linear transport
phenomena based on the ballistic nature of the electron transport. According to these
predictions, when finite voltages VL and VR are applied to the left and right arms of a symmetric
Y junction device in push–pull fashion, i.e., with VL = −VR , the voltage at the central
branch will always be negative. It was also predicted that these properties are inherent to TBJ
devices in general. These findings were recently verified experimentally in InGaAs/InP [8]
and AlGaAs/GaAs [9] Y-shaped TBJs as well as InGaAs/InP T-shaped TBJs [10]. In the latter
case, room-temperature operation was also demonstrated. It is interesting to note that similar
effects have also been predicted for carbon nanotube Y junctions [17, 18].

The properties found for TBJs are potentially important for a number of future electronic
applications on the nanometre scale. For example, it has been proposed [15] that TBJs
operating in the push–pull fashion discussed above can have rectifying properties due to the
negative output voltage at the central branch. Other proposed applications include second-
harmonic generation [15, 19] and the use of TBJs as diodes and triodes [16], as well as logic
gates [15, 19]. Some of these devices have already been realized experimentally based on
high-quality semiconductor heterostructures [11]. In addition, these devices can be made from
semiconductor heterostructures with a one-step lithography process and, thus, the nanoimprint
lithography technique can be exploited to achieve mass production of these devices [20].

The theoretical predictions and analyses given in [15] were made under the assumption that
the three-terminal junction can be modelled by connecting three quantum point contacts via
a ballistic cavity with adiabatic boundaries, thus neglecting backscattering of electrons. The
question is to what extent quantum interference effects, which are expected to be of importance
for waveguide devices on the nanometre scale [21–29], influence the electron transport through
TBJs. Complex scatterings and formation of quasi-bound states in the central junction region of
the TBJ may strongly influence the properties of the electron transport. Several investigations
of the two-terminal electron transport through electron waveguides (quantum wires) coupled
via some ballistic cavity have shown strong signatures of interference effects arising from the
scattering of electron waves between the wires and the cavity [26–29]. Similar effects are
therefore expected to be importance for electron transport through TBJs, where the central
connecting region forms an electron cavity. Furthermore, electron waves may be scattered in
the TBJ due to impurities [30], boundary roughness [31], differences in the density of states
of the three branches resulting from intentional or un-intentional asymmetries in the TBJ etc.
These scattering mechanisms are important for the understanding of the underlying physics
as well as the properties and functionalities relevant to applications using TBJs. However, to
the best of our knowledge, no extensive studies of electron transport through TBJs have been
performed to this day. The few theoretical studies that have been carried out [12–15] have
only treated simple cases, using theoretical models unsuitable for fully taking into account
scattering in the devices. It is the purpose of this paper to derive an adequate formalism for
the calculation of electron transport in TBJs, taking into consideration the above-mentioned
scattering mechanisms.

In the past few years, several theoretical and numerical methods, such as the transfer-
matrix method [32, 33], the time-dependent approach [34], the recursive Green function
method [35, 36] and the scattering-matrix method [37–40], have been used for the study
of electron transport in quantum waveguides with different configurations. In particular, the
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Figure 1. (a) Schematics of a Y-junction device. The hatched region illustrates the domain in which
electron transport is allowed. (b) Modelling of the potential profile is done by dividing the structure
into a number of segments. These segments are made small enough such that in each segment the
potential profile may be assumed to be of transverse dependence only. Within each branch, a basis
set is used in the calculation of the transverse modes in each of the segments. The basis sets are
eigensolutions to an infinite-square-well problem. Shaded regions illustrate infinite-square-well
potentials (zero potential in shaded regions) in which the basis sets are defined.

scattering-matrix method is well established and has the advantage of being numerically stable
and of providing the possibility of treating complicated two-dimensional potential profiles
which are hard to investigate using lattice-based models. In addition, evanescent states are
naturally included in the analysis without causing numerical instabilities, even when applied
to strongly modulated structures, see e.g. [37, 38]. This method has been successfully tested
and used in recent years for the study of a variety of systems including e.g. disordered quantum
wires [30, 31], antidot arrays [37], disordered Aharonov–Bohm interferometers [39], quantum
dot structures [40–43], quantum coherent networks [44], coupled quantum wires [45] etc. The
method has, as far as we know, not been used for studies of electron transport in three-terminal
structures, and a formulation and implementation of the method has not yet been demonstrated.

In this paper we develop a scattering-matrix formalism based on a common basis approach
for the calculation of electron transport in a Y-shaped three-terminal junction. The common
basis approach allows for large flexibility in the choice of lateral and longitudinal potential
profiles, including impurities and boundary roughness as well as arbitrary potential profiles
both along and perpendicular to the direction of transport. We will show how the formalism
may be implemented and used for the study of realistic Y-junction structures, and exemplify
the use by calculating the transport properties of TBJs with geometrical configurations typical
to experiments.

The paper is organized as follows. In section 2 we give a derivation of the formalism
and discuss some numerical issues. Section 3 is devoted to the implementation and use of the
method in practical calculations. Finally, a brief summary and some remarks are given.

2. Formalism

Consider the schematics of the Y-shaped three-terminal junction shown in figure 1. The left,
right and central branches (arms), which are labelled by L, R, C , are each divided into a
large number of small segments, which are small enough such that the potential profile in
each segment is of transverse dependence only. In each segment, here labelled i , the motion
of an electron with a given energy ε is described by a wavefunction satisfying the following



12516 D Csontos and H Q Xu

effective-mass Schrödinger equation:[
− h̄2

2m∗

(
∂2

∂x2
+

∂2

∂y2

)
+ U b,i

c (y) + U b,i
s (y)

]
�b,i(x, y) = ε�b,i (x, y), (1)

where b = L, R, C labels the three branches, U b,i
c (y) describes the transverse confinement

defined by the boundaries of the three-terminal junction (solid line in figure 1(b)), U b,i
s (y)

is the transverse potential inside segment i of branch b and m∗ is the effective mass of the
electron.

Expanding the wavefunction �b,i(x, y) in terms of the transverse modes {φb,i
n (y)}, with

eigenvalues {Eb,i
n }, of segment i in branch b, and the free electron wavefunction describing

the motion in the direction of transport, yields the relation

�b,i (x, y) =
∑

n

[ab,i+
n eikb,i

n (x−xb,i
0 ) + ab,i−

n e−ikb,i
n (x−xb,i

0 )]φb,i
n (y), (2)

where xb,i
0 is a reference coordinate along the x direction of segment i , and kb,i

n =
[2m∗(ε − Eb,i

n )/h̄2]1/2 are longitudinal wavenumbers which may be either real or imaginary,
thus corresponding to propagating or evanescent states, respectively. The labels +(−) denote
states that are propagating forwards or evanescent (propagating backwards or exponentially
increasing). The transverse wavefunctions {φb,i

n (y)} satisfy the equation[
− h̄2

2m∗
d2

dy2
+ U b,i

c (y) + U b,i
s (y)

]
φb,i

n (y) = Eb,i
n φb,i

n (y). (3)

In order to find the unknown transverse eigenmodes {φb,i
n (y)} we perform an expansion in

terms of the complete basis sets [37] {ψb
α(y)} (one common basis set for each branch), which

are chosen to be eigensolutions of the infinite-square-well potential problem. The basis sets
are defined within the widths W b as shown in figure 1(b), and thus have the form

ψb
α (y) =

√
2

W b
sin[απ(y − yb

0 )/W b] α = 1, 2, 3, . . . , (4)

where yb
0 and yb

0 + W b are the transverse boundaries of the infinite-square-well potential. The
wavefunction �b,i (x, y) may thus be written according to

�b,i (x, y) =
∑

α

ψb
α (y)

∑
n

db,i
αn [ab,i+

n eikb,i
n (x−xb,i

0 ) + ab,i−
n e−ikb,i

n (x−xb,i
0 )]. (5)

By inserting equation (5) into the Schrödinger equation (1), multiplying by ψb
β(y) and

integrating with respect to y, we obtain the following system of equations, which renders
the transverse eigenmodes φb,i

n (y) and the corresponding eigenvalues Eb,i
n , as well as the

expansion coefficients db,i
αn :∑

α

[(εb
β − Eb,i

n )δβα + 〈ψb
β (y)|U b,i

c (y) + U b,i
s (y)|ψb

α(y)〉]db,i
αn = 0, β = 1, 2, 3, . . . , (6)

where the terms εb
β are eigenenergies to the corresponding basis functions ψb

β(y).
The unknowns remaining to be found are the coefficients {ab,i±

n } in equation (5). These
coefficients may be obtained by means of mode-matching techniques. For a two-terminal
system (such as each individual branch in figure 1(b)), one can relate the coefficients in two
adjacent segments i and j = i + 1 by a (two-terminal) transfer matrix T b(i, j) according to(

Ab,i+

Ab,i−

)
= T b(i, j)

(
Ab, j+

Ab, j−

)
, (7)
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where Ab,i± are column vectors containing the coefficients {ab,i±
n }. In contrast, in the

scattering-matrix method the coefficients in two adjacent segments i and j = i + 1 are related
by a (two-terminal) scattering-matrix according to(

Ab, j+

Ab,i−

)
= Sb(i, j)

(
Ab,i+

Ab, j−

)
, (8)

thus separating the incoming states from the outgoing states.
It has been previously shown [37] that

(i) the total scattering matrix Sb(1, N) (of a two-terminal system containing N segments)
connecting the amplitudes of the states in the outmost segments of the structure may be
calculated iteratively provided that Sb(1, 2) is known,

(ii) the scattering matrix Sb(1, i + 1) connecting the amplitudes in the first segment of the
two-terminal system to the ones in an arbitrary segment i + 1 may be obtained in terms of
the scattering and transfer matrices, Sb(1, i) and T b(i, i + 1), and

(iii) the submatrices of Sb(1, i + 1) are given by ( j = i + 1 and labels b omitted for brevity)

S11(1, j) = [1 − T −1
11 (i, j)S12(1, i)T21(i, j)]−1T −1

11 (i, j)S11(1, i)

S12(1, j) = [1 − T −1
11 (i, j)S12(1, i)T21(i, j)]−1

× [T −1
11 (i, j)S12(1, i)T22(i, j) − T −1

11 (i, j)T12(i, j)] (9)

S21(1, j) = S21(1, i) + S22(1, i)T21(i, j)S11(1, j)

S22(1, j) = S22(1, i)T21(i, j)S12(1, j) + S22(1, i)T22(i, j).

The transfer matrix T b(i, j) is obtained [23, 46, 47] by imposing the conditions of continuity
of the wavefunctions, �b,i(x, y) and �b,i+1(x, y), and of their derivatives at interfaces between
adjacent segments, and has the form

T b(i, j) =
[

γb,i 0
0 (γb,i )−1

]−1 (
Db,i Db,i

Db,iKb,i −Db,iKb,i

)−1 (
Db, j Db, j

Db, jKb, j −Db, jKb, j

)
(10)

where the submatrices γb,i , Db,i and Kb,i are given by

(γb,i )nn = eikb,i
n lb,i

, (Db,i)αn = db,i
αn , (Kb,i )nn = kb,i

n , (11)

and lb,i is the longitudinal size of segment i .
Thus, (two-terminal) scattering matrices of the form Sb(1, i + 1) may be calculated

iteratively using equations (9), (10), provided the scattering matrix Sb(1, 2) is known, rendering
the successive evaluation of Sb(1, 3),Sb(1, 4), . . . ,Sb(1, N). The explicit form of Sb(1, 2)

is given in appendix A.
In our model we separate the motion in the left and right branches and use the two-terminal

scattering-matrix formalism above in order to establish a relation between the amplitudes of
the states in the outmost segments of the left and right branches and thus (assuming NL (NR)

segments for the left(right) branch)(
AL ,NL +

AL ,1−

)
= SL(1, NL )

(
AL ,1+

AL ,NL −

)
(

AR,NR +

AR,1−

)
= SR(1, NR)

(
AR,1+

AR,NR −

)
.

(12)

In order to calculate the transport properties of a three-terminal device of the type depicted
in figure 1 we wish to calculate the amplitudes AL ,1±, AR,1± and AC,NC ±, of the states in the
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outmost segments of the system. Similarly to the approach discussed above, we can relate
these amplitudes by a three-terminal scattering matrix, S′(L R, NC ), which, using the notations
above, satisfies the following relation:(

AC,NC +

AR,1−
AL ,1−

)
= S′(L R, NC )

(
AR,1+

AL ,1+

AC,NC −

)
. (13)

We proceed to derive an expression for S′(L R, 1), which connects the amplitudes of the states
in the first segments of the left and right branches and the first segment of the central branch
(see figure 1(b) for definitions). Subsequently, we show an iterative relation, analogous to
equation (9), for the three-terminal scattering matrix, S′(L R, j = i + 1), which enables the
calculation of the total scattering matrix of the system, S′(L R, NC ).

First, the connection between the wavefunctions in the left, right and central branches at the
interface at x = xC,1

0 is obtained by imposing the conditions of continuity of the wavefunctions,
�L ,NL , � R,NR and �C,1, and of their first derivatives at the corresponding interface. Thus, we
need to consider the following set of equations:

�L ,NL (xC,1
0 , y) + � R,NR (xC,1

0 , y) = �C,1(xC,1
0 , y) (14a)

∂

∂x

[
�L ,NL (x, y) + � R,NR (x, y)

]
x=xC,1

0
= ∂

∂x
[�C,1(x, y)]x=xC,1

0
, (14b)

where the wavefunctions �b,i have the form stated in equation (5).
In order to eliminate the remaining position dependence (y) in equations (14a) and (14b),

we multiply both sides of the equations with basis functions ψb
β (y) corresponding to one

of the three basis sets used in the wavefunction expansion of equation (5) and subsequently
integrate with respect to y. The basis sets {ψL

β (y)} and {ψ R
β (y)} are spatially separated and

defined within yL
0 � y � yL

0 + W L and y R
0 � y � y R

0 + W R , respectively. In our model we
further assume that these two regions are defined within yC

0 � y � yC
0 + W C (see figure 2

for schematics). Using this assumption, equation (14a) should be multiplied by ψC
β (y) and

integrated with respect to y. Equation (14b) on the other hand should be multiplied in turn by
ψL

β (y) and ψ R
β (y) and be integrated with respect to y. The resulting relation can be written in

the matrix form

MLMγ




AR,NR +

AL ,NL +

AR,NR −
AL ,NL −


 = MR

(
AC,1+

AC,1−

)
, (15)

with

ML =
(

F RDR,NR F LDL ,NL F RDR,NR F LDL ,NL

DR,NR K R,NR 0 −DR,NR K R,NR 0
0 DL ,NL KL ,NL 0 −DL ,NL KL ,NL

)

Mγ =



γR,NR 0 0 0
0 γL ,NL 0 0
0 0 (γR,NR )−1 0
0 0 0 (γL ,NL )−1




MR =
[

DC,1 DC,1

(F R)T DC,1KC,1 −(F R)T DC,1KC,1

(F L)T DC,1KC,1 −(F L)T DC,1KC,1

]
,

(16)
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Figure 2. Schematic view of the regions in the left, right and central branches of a Y-junction in
which the complete basis sets used in the calculations are defined (shaded regions). The approach
is based on the assumption that the basis sets in the left and right branches are defined within
yC

0 � y � yC
0 + W C .

where Db,i , γb,i and Kb,i are matrices with elements given by equation (11) and F L and F R

are matrices containing overlap integrals of the form

(F R)βα =
∫ yR

0 +W R

yR
0

ψC
β (y)ψ R

α (y) dy

(F L)βα =
∫ yL

0 +W L

yL
0

ψC
β (y)ψL

α (y) dy.

(17)

The dimensions of the matrices in the equations above are determined by the numbers of basis
functions, ML , MR and MC , used in the wavefunction expansions of equation (5). In principle,
ML , MR and MC should go to infinity. In practice, however, equation (6) has to be solved
numerically by truncating ML , MR , MC at high transverse levels. To proceed we also assume
MC = ML + MR .

Using the results of equation (12) we can eliminate the coefficient vectors AL ,NL and
AR,NR in equation (15) and obtain the following relation:(

AC,1+

AR,1−
AL ,1−

)
= S′(L R, 1)

(
AR,1+

AL ,1+

AC,1−

)
. (18)

The three-terminal scattering matrix S′(L R, 1) can be written in terms of four MC × MC block
matrices according to (for derivation of S′(L R, 1) see appendix B):

S′
11(L R, 1) = 2[1 + (DC,1)−1P Q−1R]−1(DC,1)−1PΓ [1 − S12ΓWΓ ]−1S11

S′
12(L R, 1) = [1 + (DC,1)−1P Q−1R]−1{4(DC,1)−1PΓ [1 − S12ΓWΓ ]−1

× S12ΓU−1Q−1R − 1 + (DC,1)−1P Q−1R} (19)

S′
21(L R, 1) = S21 + S22[1 − ΓWΓS12]−1[ΓWΓS11]

S′
22(L R, 1) = 2S22[1 − ΓWΓS12]−1ΓU−1Q−1R,
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where

Si j =
(

SR
i j 0

0 SL
i j

)
i, j = 1, 2

U = 1 + Q−1R(DC,1)−1P

V = 1 − Q−1R(DC,1)−1P

W = U−1V

P = (F RDR,NR F LDL ,NL )

Q =
(

DR,NR K R,NR 0
0 DL ,NL KL ,NL

)

R =
[

(F R)T DC,1KC,1

(F L)T DC,1KC,1

]

Γ =
[

γR,NR 0
0 γL ,NL

]
,

(20)

are MC × MC matrices. We emphasize that in the derivation of S′(L R, 1) we have avoided
any inversions of F L and F R . Such inversions can lead to numerical instability1.

Knowing S′(L R, 1), the only remaining step is to calculate the total scattering matrix,
S′(L R, NC ), which connects the amplitudes of the states in the outmost segments of the three-
terminal junction (see equation (13)). We use an approach similar to the one used in [37] in
the scattering-matrix approach for two-terminal systems. Given a known scattering matrix
S′(L R, i), a new scattering matrix S′(L R, i + 1) can be calculated using S′(L R, i) and the
transfer matrix T C(i, i + 1) connecting the amplitudes in the two adjacent segments i and
i + 1 (see equation (10)). Thus, an iterative relation for the scattering matrix S′(L R, i + 1),
starting from S′(L R, 1), can be established. It can be shown (see appendix C) that the matrix
S′(L R, i + 1) consists of four MC × MC blocks which are given by the following relations:

S′
11(L R, i + 1) = [1 − T −1

11 (i, i + 1)S′
12(L R, i)T21(i, i + 1)]−1T −1

11 (i, i + 1)S′
11(L R, i)

S′
12(L R, i + 1) = [1 − T −1

11 (i, i + 1)S′
12(L R, i)T21(i, i + 1)]−1

× [T −1
11 (i, i + 1)S′

12(L R, i)T22(i, i + 1) − T −1
11 (i, i + 1)T12(i, i + 1)] (21)

S′
21(L R, i + 1) = S′

21(L R, i) + S′
22(L R, i)T21(i, i + 1)S′

11(L R, i + 1)

S′
22(L R, i + 1) = S′

22(L R, i)T21(i, i + 1)S′
12(L R, i + 1) + S′

22(L R, i)T22(i, i + 1),

in which Ti j(i, j) = T C
i j (i, j) was used for brevity. The final result, the total three-terminal

scattering matrix for the system, S′(L R, NC ), may thus be obtained by iteratively using the
above relation until i + 1 = NC .

From the total scattering matrix, S′(L R, NC ), we can now calculate the transport
properties of the device. The transmission and reflection coefficients between states in the
various branches are easily obtained from S′(L R, NC ) by imposing the appropriate boundary
conditions to the wavefunction. Consider for example an electron incident into the left branch
of a Y-shaped three-terminal junction device in the transverse mode m with energy ε and
wavevector kL ,1

m = [2m∗(ε − E L ,1
m )]1/2. The boundary condition for the wavefunction is(

AR,1+

AL ,1+

AC,NC −

)
=

( 0
Im

0

)
(22)

1 From numerical calculations we found that in many cases, the matrices F L,R are ill conditioned and hence give
rise to numerical errors when inverted. Thus, in our approach the formalism was derived so as to avoid any inversions
of F L,R .
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where Im is a column vector with elements given by (Im)n = δnm . Thus, equation (13) yields(
AC,NC +

AR,1−
AL ,1−

)
=


 S′

C R(L R, NC ) S′
CL (L R, NC ) S′

CC (L R, NC )

S′
R R(L R, NC ) S′

RL(L R, NC ) S′
RC(L R, NC )

S′
L R(L R, NC ) S′

L L (L R, NC ) S′
LC(L R, NC )




( 0
Im

0

)
(23)

in which we have written the full scattering matrix in block form, each block, S′
bb′ , having

dimensions Mb × Mb′ (where b, b′ = L, R, C). Consequently, we can express the probability
that an electron incident from the left branch in the transverse mode m will be transmitted or
reflected into a transverse mode n of one of the three branches in terms of the scattering matrix
of equation (23) according to

T nm
CL = kC

n

kL
m

|(AC,NC +)n|2 = kC
n

kL
m

|(S′
CL )nm|2

T nm
RL = k R

n

kL
m

|(AR,1−)n|2 = k R
n

kL
m

|(S′
RL )nm|2

Rnm
L L = kL

n

kL
m

|(AL ,1−)n|2 = kL
n

kL
m

|(S′
L L )nm|2,

(24)

where the wavevectors kb
n are real corresponding to propagating states. All transmission

probabilities of the general form T nm
bb′ may similarly be obtained by applying the corresponding

boundary conditions and using the blocks S′
bb′ of equation (23).

For a given energy ε, the total transmission between branches b and b′ is obtained by
summing over all states which can carry current in the two branches b and b′ according to the
relation

Tb′b(ε) =
(occ)∑
n,m

kb′
n

kb
m

|(S′
b′b)nm|2, (25)

where the summation is to be done over all states n and m which are occupied at the given
energy. Similarly, the total reflection in branch b at energy ε may be obtained from

Rbb(ε) =
(occ)∑
n,m

kb
n

kb
m

|(S′
bb)nm|2. (26)

The calculated transmission and reflection can be used within the Landauer–Büttiker
formalism [48] to calculate transport properties such as conductance, current etc.

Current conservation implies that in each branch the following relation should hold:∑
b′( �=b)

Tb′b(ε) + Rbb(ε) = M p
b , (27)

where M p
b is the number of propagating modes in branch b. In numerical calculations, current

conservation serves as an important criterion for the validity of the results and therefore a check
of the relation (27) must be implemented accordingly.

3. Discussion and application to Y-shaped TBJs

The theoretical approach derived in the previous section provides a flexible tool for the study of
electron transport through general Y-shaped three-terminal junctions which, in principle, can
have any type of complicated geometry and/or potential profile. The longitudinal variations
of the potential profile are inherently modelled by the division of the structure into segments
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Figure 3. Transmission (Tbb′ ) and reflection (Rbb) through a symmetric Y-junction consisting of
three 70 nm wide perfect leads, connected via a 210 × 100 nm2 rectangular coupling window. The
curves correspond to TLC (thick curve), RL L (thin curve), TL R (dotted curve) and RCC (dashed
curve). All other transmission and reflections may be obtained from the symmetry of the system.
The inset shows the geometry of the device.

which are small enough such that the potential in each segment is of transverse dependence
only. An arbitrary transverse modulation of the potential profile may,however, also be included
in the modelling, thus enabling the study of realistic two-dimensional potentials. An advantage
of the method over theoretical approaches based on lattice models is that the method is less
time consuming.

Another advantage of the formalism is the numerical stability. The use of the scattering-
matrix method is advantageous due to the fact that evanescent states are fully included in
the formalism (unlike the transfer-matrix method which becomes numerically unstable when
calculating the properties of large structures with strong potential modulations) [37]. Also,
our approach is formulated so as to avoid any inversions of the matrices F L(R) which we found
can give numerical instability in many cases (see footnote 1).

To illustrate the use of the formalism presented in this paper, we have calculated the
transmission properties of a few Y-shaped junction structures with different geometries. In
previous experiments on TBJs, waveguides [8, 9, 49] and quantum point contacts [10] were
connected to coupling windows of sizes around 100 nm, the lithographic dimensions of the
quantum point contacts and waveguides being of the same order. In the following we will
show results for the transport characteristics of three, symmetric, Y-shaped TBJs with 70 nm
wide waveguides, in which U b,i

s (y) = 0.
In figure 3 we show the transmissions and reflections through an idealized symmetric

Y-shaped TBJ in which three perfect 70 nm wide and infinitely long leads are connected by a
210 × 100 nm2 rectangular coupling window (see the inset of figure 3). The confining potential
in the device is of square-well type, thus the matrix elements of U b,i

c (y) in equations (6) are
easily evaluated. The effective mass was set to m∗ = 0.047 m0 corresponding to the InGaAs
system.

The computation of the transport properties of such a device is very fast, since only a
few segments are needed in the modelling of the structure, thus wavefunction matching and
matrix handling are only performed at a handful of interfaces. Depending on the energy range
studied, a transmission spectrum such as the one calculated in figure 3 may be obtained within
minutes on a present day modern PC.
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Figure 4. Transmissions (Tbb′ ) and reflections (Rbb) through a symmetric Y-junction consisting of
three 70 nm wide perfect leads (the inset shows the geometry of the device). The three branches
are connected via a coupling window of length LC = 100 nm, the total transverse changes in the
structure occurring over a length of 150 nm (Ls = 50 nm, Lc = 100 nm, see inset). The curves
correspond to TLC (thick curve), RL L (thin curve), TL R (dotted curve) and RCC (dashed curve).
All other transmissions and reflections may be obtained from the symmetry of the system.

Numerical results are shown in figure 3. The four different curves correspond to TLC (thick
curve), RL L (thin curve), TL R (dotted curve) and RCC (dashed curve), the notation T (R)bb′

denoting transmissions (T ) and reflections (R) between branches b′ and b. The remaining
transmissions and reflections can be obtained from the curves in figure 3 due to the symmetry
of the system. It is seen that the transmission and reflection between the various branches
displays complex features, including peaks and dips of varying sharpness and amplitudes,
which originate from the complicated density of states created in the coupling window in the
central region of the device. Incoming electrons from the different branches experience strong
scatterings and mode mixings, giving rise to the complex behaviour.

Structures studied in [8, 9, 49] where the waveguides and coupling window have smooth
variations of the transverse widths along the direction of transport may also be easily modelled.
Consider for example the structure in the inset of figure 4. Similarly to the structure studied in
figure 3, the device is symmetric, containing three branches, each 70 nm wide. However, in
this case we have generated a structure in which the lateral changes occur over 150 nm, such
that it resembles typical structures used in the experiments. The central region is in this case
100 nm long similarly to the structure studied in figure 3. We still assume U b,i

s (y) = 0 and
m∗ = 0.047 m0.

In the modelling of this structure we have assumed 400 segments for each of the left and
right branches and 100 segments for the central branch, such that the segments in the regions
of varying lateral confinement are of sub-nm sizes. This type of calculation is also easily
performed with moderate computing facilities.

The calculated transmissions and reflections for the device are shown in figure 4. Again we
display TLC (thick curve), RL L (thin curve), TL R (dotted curve) and RCC (dashed curve), and the
rest of the transmissions and reflections can be found from these curves based on the symmetry
of the system. Comparison between figures 3 and 4 shows that the smoothness introduced in
the lateral confinement of the structure along the direction of transport eliminates many of the
sharp features seen in figure 3. However, the transmission and reflection spectra still show
strong fluctuations due to the formation of quasi-bound states in the central junction region.
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Figure 5. Example of a Y-junction device (with identical geometrical parameters to the structure
studied in figure 4) with corrugated boundaries caused by, e.g., the process of etching. In this
particular sample the amplitude, δy, of the boundary roughness was set to δy = 5 nm.
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Figure 6. Transmission (Tbb′ ) and reflection (Rbb) as a function of energy for the Y-junction device
as shown in figure 5. The curves correspond to TLC (thick curve), RL L (thin curve), TL R (dotted
curve) and RCC (dashed curve). All other transmission and reflections may be obtained from the
symmetry of the system.

Even more realistic model structures with the presence of, for instance, impurity scattering
and/or boundary roughness scattering [U b,i

s (y) �= 0] may also be studied without drastically
increasing the computational time. The latter may for instance occur in experiments due to
the process of etching. The boundary roughness may be modelled, e.g., as in figure 5 where
we show the geometry of a Y-junction structure with identical geometrical parameters to the
structure studied in figure 4. However, as shown in the figure, the boundaries are corrugated,
such that the transverse positions of the boundaries fluctuate within an interval δy, which in
this particular case is chosen as δy = 5 nm.

The transmissions and reflections through the structure of figure 5 are shown in figure 6,
where each of the curves has the same meaning as in figures 3 and 4, i.e., the thick curve for
TLC , the thin curve for RL L , the dotted curve for TL R and the dashed curve for RCC . It is seen
by comparison with figure 4 that the presence of boundary roughness in the system gives rise
to new fluctuations in the transmission and reflection spectra.
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4. Summary and remarks

In summary, in this paper we have derived a formalism based on the scattering-matrix method
for the calculation of electron transport through three-terminal junctions. We have shown how
the method may be implemented for the modelling of general Y-junctions with complicated
geometries and potential profiles and have illustrated the use of the method by calculating the
transmission properties of a few model Y-shaped TBJ structures with geometrical parameters
typical to experiments. Complicated transport characteristics are shown to occur in Y-shaped
TBJ structures, which are due to complex scatterings between the three incoming leads and
the central connecting region. The flexibility of the method, arising from the use of a common
basis approach, allows for the study of the effects of various scatterings such as boundary
roughness and impurity scatterings, as well as the modelling of arbitrary shapes of the device.
The formalism presented in this paper is a useful tool for extensive studies of the properties of
TBJs, which recently have received attention due to their potential use as building blocks in
future nanoscale electronic devices.

Before closing, we would like to note that it is interesting to study the nonlocal effect of
electron transport and to calculate the multi-terminal resistance of various Y-junction devices
with and without an applied magnetic field,based on the transmissions obtained with the present
formalism. The nonlocal electron transport in multi-terminal systems has been subjected to
an extensive study in recent years [21, 50–53] and a few interesting devices, such as the
Hall magnetometer [52] and the Hall potentiometer [53], have been proposed based on these
studies. It should also be noted that the formulation presented in this work does not include
the effects of interaction. There has been much interest in the search for unconventional
electron behaviour, such as the Luttinger-liquid behaviour [54], deviating from the single-
particle picture. The evidence for the existence of the Luttinger-liquid behaviour in one-
dimensional quantum wires [55] and carbon nanotubes [56, 57] has been previously reported.
The question of whether this behaviour can be observable in a Y-junction waveguide or carbon
nanotube structure is certainly interesting to study. However, such a study is beyond the scope
of the present work.
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Appendix A. Evaluation of SL(1, 2) and SR(1, 2)

The scattering matrices SL (1, 2) and SR(1, 2) which connect the amplitudes of the first and
second segments of the left and right branches are obtained from

Sb
11(1, 2) = [T b

11(1, 2)]−1

Sb
12(1, 2) = −[T b

11(1, 2)]−1T b
12(1, 2)

Sb
21(1, 2) = T b

21(1, 2)[T b
11(1, 2)]−1

Sb
22(1, 2) = −T b

21(1, 2)[T b
11(1, 2)]−1T b

12(1, 2) + T b
22(1, 2),

(A.1)

where T b(1, 2) is given by equation (10) with xb,1
0 = xb,2

0 . For derivation see Xu [37].
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Appendix B. Derivation of S′(LR, 1)

In the following we will give a short derivation of the scattering matrix S′(L R, 1). Using the
definitions made in equation (20) we can write the relation (15) according to

(
P P

Q −Q

) (
Γ 0
0 Γ−1

) 


AR,NR +

AL ,NL +

AR,NR −
AL ,NL −


 =

(
DC,1 DC,1

R −R

) (
AC,1+

AC,1−

)
. (B.1)

After some elementary matrix algebra one can show that(
AR,NR −
AL ,NL −

)
= ΓWΓ

(
AR,NR +

AL ,NL +

)
+ 2ΓU−1Q−1RAC,1− (B.2)

(in which care must be taken as to avoid any inversions of the matrices, F L ,R (see footnote
1)). Using equations (12) and (B.2) one can show that(

AR,1−
AL ,1−

)
= {S21 + S22[1 − ΓWΓS12]−1[ΓWΓS11]}

(
AR,1+

AL ,1+

)
+ 2S22[1 − ΓWΓS12]−1ΓU−1Q−1RAC,1−, (B.3)

where the blocks Si j are given in equation (20).
Since the three-terminal scattering matrix S′(L R, 1) relates the amplitudes

AC,1+,AR,1−,AL ,1− to the amplitudes AR,1+,AL ,1+,AC,1− we now need to find a relevant
expression for AC,1+. From equation (B.1) one can show that

2(DC,1)−1PΓ

(
AR,NR +

AL ,NL +

)
= [1 + (DC,1)−1P Q−1R]AC,1+ + [1 − (DC,1)−1P Q−1R]AC,1−.

(B.4)

Equation (12) is again used in order to express the amplitudes Ab,Nb + in terms of Ab,1±.
Together with the relation (B.2), equation (B.4) may be rewritten as

AC,1+ = 2[1 + (DC,1)−1P Q−1R]−1(DC,1)−1PΓ [1 − S12ΓWΓ ]−1S11

(
AR,1+

AL ,1+

)
+ [1 + (DC,1)−1P Q−1R]−1{4(DC,1)−1PΓ [1 − S12ΓWΓ ]−1

× S12ΓU−1Q−1R − 1 + (DC,1)−1P Q−1R}AC,1−. (B.5)

The blocks of S′(L R, 1) (equation (19)) are then readily obtained from (B.3) and (B.5).

Appendix C. Iterative relation for S′(LR, i + 1)

Knowing S′(L R, 1) it is now possible to calculate the total scattering matrix for the system
using an iterative approach. Assume for instance that the scattering matrix S′(L R, i) is known
and thus (

AC,i+

AR,1−
AL ,1−

)
=

(
S′

11(L R, i) S′
12(L R, i)

S′
21(L R, i) S′

22(L R, i)

)(
AR,1+

AL ,1+

AC,i−

)
. (C.1)

The amplitudes of the states in two adjacent segments i and j = i + 1 in the central branch
may be related by a transfer matrix T C(i, j = i + 1)(

AC, j+

AC, j−

)
=

(
T C

11(i, j) T C
12(i, j)

T C
21(i, j) T C

22(i, j)

)(
AC,i+

AC,i−

)
, (C.2)
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where T C is given by equation (10). By eliminating AC,i± from the above two equations we
can show that

AC, j+ = [1 − T −1
11 (i, j)S′

12(L R, i)T21(i, j)]−1T −1
11 (i, j)S′

11(L R, i)

(
AR,1+

AL ,1+

)
+ [1 − T −1

11 (i, j)S′
12(L R, i)T21(i, j)]−1

× [T −1
11 (i, j)S′

12(L R, i)T22(i, j) − T −1
11 (i, j)T12(i, j)]AC, j−(

AR,1−
AL ,1−

)
= [S′

21(L R, i) + S′
22(L R, i)T21(i, j)S′

11(L R, j)]

(
AR,1+

AL ,1+

)
+ [S′

22(L R, i)T21(i, j)S′
12(L R, j) + S′

22(L R, i)T22(i, j)]AC, j−, (C.3)

from which the blocks S′
i j(L R, j) of equation (21) can be obtained.
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